Automata and Formal Languages

Lecture 05

Books

PowerPoint

http://www.bu.edu.eg/staff/ahmedaboalatah14-courses/14767

Benha U	Jniversity s	Staff Settlefione:Ahmed Hassan Ahmed Abu El Atta	a (Le
Benha University Home	You are in: <u>Home/Courses/Auto</u> Ass. Lect. Ahmed Hassa Automata And Formal	mata and Formal Languages Back To Courses an Ahmed Abu El Atta :: Course Details: Languages	
التسغة العربية		add course edit course	
My C.V.	Course name	Automata and Formal Languages	RG
About	Level	Undergraduate	in
Publications	Last year taught	2018	1
Inlinks(Competition)	Course description	Not Uploaded	
Ineses			5
Reports Dublished books	Course password		ŭ.
Workshops / Conferences			Ŵ
Supervised PhD	Course files	add flies	6
Supervised MSc	Course URLs	add URLs	m
Supervised Projects	Course assignments	add assignments	ž
Education			š
Language skills	Course Exams &Model Answers	add exams	2
Academic Positions			edit)
Administrative Positions			

Regular Expressions & NFA

Agenda

Regular Expressions

The Operations Priority

Languages Associated with Regular Expressions

≻RE to NFA

► Examples

Regular Expression to Finite Automaton

► Examples

Regular Expressions

The set of regular expressions over an alphabet "A" is defined inductively as follows, where + and • are binary operations and * is a unary operation:

Basis:

• Λ , ϕ , and **a** are regular expressions for all **a** \in **A**.

Induction:

• If **R** and **S** are regular expressions, then the following expressions are also regular:

(R), R + S, R.S, and R*.

The Operations Priority

* highest (do it first),

+ lowest (do it last).

 $a + b.a^* = (a + (b.(a^*)))$

$L(\phi) = \phi,$ $L(\Lambda) = (\Lambda),$ $L(a) = (a) \text{ for each } a \in A,$ $L(R + S) = L(R) \cup L(S),$

Languages Associated with

Regular Expressions

 $L(R \bullet S) = L(R)L(S)$ (language product), $L(R^*) = L(R)^*$ (language closure).

RE to NFA

First parse *r* into its constituent sub expressions.

Construct NFA's for each of the basic symbols in *r*.

€

€

N(t)

Every time we construct a new state, we give it a distinct name.

Example 08

Find an NFA that accepts L (r), where

Λ

Example 09

Find an NFA that accepts each regular Expression

a*a + ab (aab)*ab ab*aa

Regular Expression to Finite Automaton

Given a regular expression, we start the algorithm with a machine that

has a start state, a single final state, and an edge labeled with the given regular expression as follows:

Applying the following rules until all edges are labeled with either a letter or Λ :

Regular Expression to Finite Automaton (cont.)

1. If an edge is labeled with ø, then erase the edge.

2. Transform any diagram like

into the diagram

Regular Expression to Finite Automaton (cont.)

3. Transform any diagram like

into the diagram

Regular Expression to Finite Automaton (cont.)

4. Transform any diagram like

into the diagram

End of Algorithm

Example 11

Find an NFA that accepts each regular Expression

Λ + b (1 + 01)*(Λ + 0) a*a + ab (aab)*ab ab*aa

