Automata and Formal Languages
 Lecture 05

Books

PowerPoint

http://www.bu.edu.eg/staff/ahmedaboalatah14-courses/14767

Regular Expressions \& NFA

Agenda

>Regular Expressions
$>$ The Operations Priority
>Languages Associated with Regular Expressions
\rightarrow RE to NFA
>Examples
$>$ Regular Expression to Finite Automaton
>Examples

Regular Expressions

The set of regular expressions over an alphabet " A " is defined inductively as follows, where + and • are binary operations and * is a unary operation:

Basis:

$\bullet \Lambda, \emptyset$, and a are regular expressions for all a $\in \mathrm{A}$.
Induction:

- If R and S are regular expressions, then the following expressions are also regular:
(R), R + S, R.S, and R*.

The Operations Priority

* highest (do it first),

+ lowest (do it last).

$$
a+b \cdot a^{*}=\left(a+\left(b \cdot\left(a^{*}\right)\right)\right)
$$

Languages Associated with Regular Expressions

$L(\varnothing)=\varnothing$,
$L(\Lambda)=(\Lambda)$,
$L(a)=(a)$ for each $a \in A$,
$L(R+S)=L(R) \cup L(S)$,
$L(R \bullet S)=L(R) L(S)$
(language product),
$L\left(R^{*}\right)=L(R)^{*}$
(language closure).

RE to NFA

First parse r into its constituent sub expressions.

Construct NFA's for each of the basic symbols in r.
\circ for ε

- for a in Σ

- for \varnothing

RE to NFA (cont.)

For the regular expression $s+t$,

For the regular expression s.t,

RE to NFA (cont.)

For the regular expression s^{*},

For the parenthesized regular expression (s), use $N(s)$ itself as the NFA.

Every time we construct a new state, we give it a distinct name.

Example 08
Find an NFA that accepts $L(r)$, where

$$
r=(\Lambda+a b)^{*}
$$

Example 09

Find an NFA that accepts each regular Expression

a*a + ab
(aab)*ab
ab*aa

Regular Expression to Finite Automaton

Given a regular expression, we start the algorithm with a machine that has a start state, a single final state, and an edge labeled with the given regular expression as follows:

Applying the following rules until all edges are labeled with either a letter or \wedge :

Regular Expression to Finite Automaton (cont.)

1. If an edge is labeled with \varnothing, then erase the edge.
2. Transform any diagram like

into the diagram

Regular Expression to Finite Automaton (cont.)

3. Transform any diagram like

into the diagram

Regular Expression to Finite Automaton (cont.)

4. Transform any diagram like

into the diagram

End of Algorithm

Example 10

Construct an NFA for a* + ab
1

Example 11

Find an NFA that accepts each regular Expression
$\Lambda+b$
$(1+01)^{*}(\Lambda+0)$
$a^{*} a+a b$
(aab)*ab
ab*aa

